
66 Journal of Alloys and Compounds, 211/212 (1994) 66-70 
JALCOM 041 

Mechanical  loss measurements  on yttria- and calcia-stabilized 
zirconia 

M. W e l l e r  
Max-Planck-Institut far Metallforschung, Institut far Werkstoffwissenschafl, D-70174 Stuttgart (Germany) 

Abstract 

In cubic ZrO2 defects (oxygen vacancies) are created as a consequence of doping with lower valency cations (10 
mol.% Y203 or 16 tool.% CaO) which are required for stabilization of the cubic phase. Mechanical loss 
measurements were applied on single crystals of cubic zirconia to study the local crystallographic structure of 
atomic defects. Specimens with different longitudinal axes ([100], [110], [111]) were measured in torsional ( f= 1 
Hz) and flexural oscillations ( f= 1 kHz). A composite loss maximum consisting of two submaxima is observed: 
I (=410  K) and 1A (=510  K) in ZrO2-Y203; 1 ' (=430  K) and IA' (=515 K) in ZrO2-CaO ( f = l  Hz). The peak 
heights of maxima I and I '  depend on specimen orientation as expected for a defect of trigonal ([111]) symmetry. 
This strongly points to oxygen vacancies located at nearest neighbour sites close to the dopant atoms which form 
elastic (and electric) dipoles, i.e. (VoY'zr)" or (V~Ca")-pairs, which are aligned parallel to (111) directions. The 
anelastic shape factor of the dipoles characterizing the anisotropy and strength of the local atomic displacements 
was determined as 6A = 0.1 for yttria-stabilized and 6A = 0.05 for calcia-stabilized zirconia. Loss maxima I A and 
Ig '  are assigned to larger clusters of oxygen vacancies with two or more dopant atoms. 

1. Introduction 

Pure zirconia (ZrO2) exists in three well-defined 
polymorphs all of which are closely related to the cubic 
fluorite (CaF2) structure. The monoclinic phase has a 
distorted fluorite structure and transforms into tetrag- 
onal ZrOz at about 1400 K. The tetragonality of this 
second phase is small (c/a ratio= 1.02) corresponding 
to a slightly stretched cubic structure. In pure ZrO2 
the cubic phase exists only above 2600 K. However, 
the cubic phase may be stabilized at ambient temper- 
ature by mixing ZrO2 with lower valent rare earth or 
alkali oxides, e.g. > 8 tool.% YzO3 or >_ 16 tool.% CaO. 
Such mixed (or doped) oxides exhibit superior ionic 
conductivity at elevated temperatures. This was detected 
in the previous century by Nernst [1] who used a mixture 
of zirconia and yttria as an electrical light source. Later 
on it was realized that zirconia is a solid electrolyte 
because of the presence of oxygen vacancies, and elec- 
trical charge transport occurs by hopping of oxygen 
ions via vacancies [2, 3]. For some time it has been 
possible to prepare tetragonal ZrO2 with about 2-3 
tool.% Y203 as a metastable phase at room temperature 
(RT) in the form of fine grained polycrystals (TZP). 

The oxygen vacancies in cubic zirconia are created 
for electrical charge compensation because of doping 
with lower valent cations. In the commonly applied 
Kr6ger-Vink notation (see e.g. refs. 4 and 5) this may 

be represented by the following defect reactions: 

Y203 zr°~ ~ 2V'zr + Vo+ 30~ (1) 
ZrO2 

CaO , Ca-zr + Vg + (Yo (2) 

Equations (1) and (2) indicate that one oxygen vacancy 
(Vo is created for every two y3+ ions or for every 
Ca 2÷ ion (replacing Zr4+). 

The arrangement of cations and anions in the cubic 
fluorite structure is shown in Fig. 1. Figure l(a) shows 
the face-centred cubic packing of the cations with the 
oxygen ions inside. The simple cubic packing of the 

o) 

0 cation 

0 . ~  onion {oxygen) 

b) 

• dopant cation (Y.Ca) 

C~ oxygen vacancy 

Fig. 1. Fluorite structure in different representations to dem- 
onstrate the coordination around the cations (a) and anions (b). 
The defect symmetry of an oxygen vacancy and its eight nearest 
neighbour sites around a dopant cation are indicated in (b). 
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oxygen ions is more clearly visible in Fig. l(b). Note 
that only every second simple cube contains a cation 
in its centre. In Fig. l(b) an oxygen vacancy is placed 
in the centre of the unit cell. In the fluorite lattice 
the oxygen vacancy represents an atomic defect with 
cubic symmetry. This may be derived from an inspection 
of the site symmetry of the defect including group 
theoretical considerations [6, 7]. The cubic symmetry 
of the vacancy may also be seen from its environment 
in Fig. l(b). The vacancy is surrounded by six oxygen 
ions which spread an octahedron with cubic symmetry. 
The next four cations are located on a tetrahedron, 
also with cubic symmetry. Since the oxygen vacancy 
represents a cubic (isotropic) defect in the cubic host 
lattice we do not expect occurrence of mechanical (or 
dielectric) relaxation [6, 7] by hopping of isolated 
vacancies. 

Mass transport, i.e. self-diffusion or ionic conduction, 
in ZrO2 and other oxides with the fluorite structure 
(CeO2, ThO2, HfO2) occurs via vacancies. The migration 
energies of vacancies in the fluorite lattice are rather 
low (0.5-1 eV) thus enabling fast oxygen diffusion at 
elevated temperatures. This is the basis for numerous 
technical applications (mostly with stabilized ZrO2), as, 
for example, in fuel cells or gas sensors. At lower 
temperatures the +2  charged Vo become trapped by 
the oppositely charged dopant ions and the following 
defect associates (complexes) are formed 

Y z r '  + V o  - " ( Y z r ' V o ) "  ( l a )  

C a " z r  4- V o ~ (Ca"z#;)* (2a) 

Contributing to mass transport of the vacancies at lower 
temperatures requires that they be detached from the 
dopant ions thus leading to a higher activation enthalpy 
for diffusion or ionic conductivity than at higher tem- 
peratures. This behaviour becomes apparent in the 
temperature variation of ionic conductivity of doped 
oxides (and other ionic crystals). The conductivity at 
high temperatures (dissociated vacancies) is determined 
by a lower activation enthalpy than at low temperatures 
(associated vacancies) [8-10]. 

Oxygen vacancies, which are associated with dopant 
atoms, constitute defect pairs which have lower sym- 
metry than the cubic host lattice. The oxygen vacancy 
in Fig. l(b) is sited in a nearest neighbour position to 
the dopant ion and constitutes an elastic (and electric) 
dipole. Reorientation of the dipole may occur by jumping 
of the vacancy around the dopant ion. As a consequence, 
such "associated vacancies" may cause anelastic and 
dielectric relaxation - contrary to isolated vacancies. 
In fact, Wachtman [11] and Nowick and coworkers [8, 
12] observed mechanical and dielectric loss maxima in 
CaO-doped ThO2 and in YzO3-doped CeOz which they 
assigned to defect associates (complexes) of oxygen 

vacancies with dopant atoms. They also concluded from 
their experiments that the oxygen vacancy is positioned 
on one of the eight nearest neighbour sites around the 
dopant atom (see Fig. l(b)). This was derived from 
the observation that the relaxation times for anelastic 
and dielectric relaxation differ by a factor of two as 
expected from theory for this defect configuration [6, 
8]. 

Another prediction of this "8-position model", the 
trigonal ((111)) defect symmetry, which results from 
the (l l l)-orientation of the dipole axis could not be 
verified up to now since suitable monocrystals, which 
are necessary for such studies, were not available. This 
prompted us to carry out the present studies on cubic 
stabilized zirconia. 

2. Experimental results 

The crystals of yttria- and calcia-stabilized zirconia 
were supplied by the Ceres Corporation (North Billerica, 
MA, USA). The larger ZrO2-10 mol.% Y 2 0 3  crystal 
allowed preparation of longer specimens with dimen- 
sions of about 40 x 5 X 1 mm 3 and with three different 
orientations of the longitudinal axis [100], [110] or [111]. 
The specimens from ZRO2-16 mol.% CaO with [110] 
and [111] orientations and dimensions of about 25 x 5 x 1 
mm 3 were prepared from two crystals with smaller size. 

Low frequency (f---3 Hz) internal friction measure- 
ments were performed with an inverted torsion pen- 
dulum by exciting the specimens to torsional (shear) 
oscillations around their longitudinal axis. High fre- 
quency measurements (f= 3 kHz) were carried out by 
applying the resonant bar technique with flexure os- 
cillations. For details see ref. 13. 

Measurements of yttria-stabilized zirconia are shown 
in Figs. 2 and 3. Both the low frequency (Fig. 2) and 
high frequency measurements (Fig. 3) show a prominent 
loss maximum between 400 and 600 K. Obviously, the 
maximum is composed of two overlapping maxima which 
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Fig. 2. Q - l  vs. T of yttria-stabilized zirconia for different crystal 
orientat ions (torsional oscillations with f - - 3  Hz).  
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Fig. 3. Q-x  vs. T of yttria-stabilized zirconia (flexure oscillations 
with f - -  3 kHz). 
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Fig. 4. Q -1 vs. T of calcia-stabilized zirconia (torsional oscillations, 
f =  3 Hz). 

are designated with I and IA. The height of the maxima 
varies with the orientation of the longitudinal axis. 

Low frequency measurements (f= 3 Hz) for calcia- 
stabilized zirconia were shown in Fig. 4. A broad loss 
maximum appears which is also composed of two sub- 
maxima and which are designated with I '  and Ia' .  The 
resonant bar technique using kilohertz oscillations could 
not be applied for these relatively shorter specimens 
(25 mm length). The loss maximum in calcia-doped 
zirconia was observed earlier by Wachtmann and Corwin 
[14] and P61aud et al. [15]. 

3 .  A n a l y s i s  o f  l o s s  s p e c t r a  

3.1. Decomposition of the loss spectra 
The loss spectra were decomposed into two Debye 

maxima according to: 

Q - a ( / ) =  2 sech ~- - (3) 

(H= mean activation enthalpy, Tp = peak temperature) 
by neglecting the temperature dependence of the re- 
laxation strength, A (T), and of the measuring frequency 
(modulus) f(T) [16]. Since the loss maxima are about 
2 to 3 times braoder than simple Debye maxima, a 
Gaussian distribution of relaxation times was introduced 
for every submaximum. The parameter/3 characterizing 
the width of the gaussian distribution is defined as in 
ref. 7. A non-linear regression procedure which is 
described in detail in ref. 16 was applied for decom- 
position of the loss spectra. 

3.1.1. ZrO2-Y20~ 
The low frequency loss spectra in Fig. 2 gave the 

following results for the three crystal orientations: 
Maximum I: Tp = 407--420 K; /3 = 4. Maximum 
IA:Tp=505-518 K; /3--3. Decomposition of the loss 
spectra of the kilohertz flexural vibrations (Fig. 3) gave 
in a similar way: 
Maximum I: Tp=504-510 K; /3=3. Maximum IA: 
Tp = 590-613 K,/3---2. All calculations were performed 
with H =  1 eV for maximum /, and /~= 1.3 eV for 
maximum IA (corresponding to ~'= = 10-14 S). 

3.1.2. ZrO2--CaO 
The two loss maxima in calcia-stabilized zirconia (Fig. 

4) are closer together. The fitting procedure gave the 
following results (two crystal orientations): 
Maximum I': Tp=432 and 434 K; /3=2.6 and 2.8. 
Maximum IA': Tp=511 and 519 K; /3=5.3 and 4.3. 

3.2. Calculation of relaxation amplitudes 
The magnitude of relaxation, which determines the 

height of a loss maximum, is usually expressed as the 
relaxation amplitude. By using compliances, i.e. recip- 
rocals of moduli, the relaxation amplitudes for shear 
oscillations, 6(3-a, and flexure oscillations, 6E-1, may 
be expressed as: 

6 G - a = A . G - 1 ;  ~ E - 1 = A . E  -1 (4) 

(G = shear modulus, E = Young's modulus). The relax- 
ation amplitudes are proportional to the concentrations 
of defects (co) and their dipole strength 6A (anelastic 
shape factor). For simple defects in cubic crystals the 
following equations hold [6, 7]: 

c°v°(SA)2 Fo(/-) (5a) 
6G - 1 =K1. kT  

CoVo(a,~) 2 
~ E  - a  = K 2 .  kZ FE(1) (5b) 
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Here Vo is the molecular volume and K1 and K2 are 
numerical parameters near unity. F is the orientation "7 

o 
parameter of the longitudinal specimen axis, a_ 

tD F= cos2acos2/3 + cos2/3cos2y + cos2ycos2a (oq /3, y = an- 
gles between longitudinal specimen axis and cubic di- ~, 0 
rections). For example, F = 0  for a [100] orientation, "- 
and F = l / 3  for a [111] direction. . -  

For simple atomic defects in cubic crystals Fo (F) "7 
and FE (/3 represent linear functions of the orientation ,z 
parameter F. These functions contain information which 
is pertinent to the defect symmetry. For trigonal ([111]- 
oriented) defects in cubic crystals, we expect 

Fo = 1 - 2/; FE = F (6) 

and for defects with tetragonal symmetry 

Fo = F; FE = 3 F -  1 (7) 

Decomposition of the loss spectra by applying the 
non-linear regression procedure [16] also gives values 
for the relaxation strength A of submaxima 1 and IA, 
and I '  and IA', respectively, for different crystal ori- 
entations, i.e. different values of F. The relaxation 
amplitudes for various orientations may then be cal- 
culated with eqns. (4) and with appropriate values of 
the elastic moduli (see ref. 13). Figure 5 shows the 
relaxation amplitudes 6(3- a and AE-~ for submaxima 
I and IA' in yttria-stabilized zirconia. The results for 
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Fig. 5. Variation of relaxation amplitudes, tSE -I and 6G -~, of 
submaxima I and I^ with orientation parameter F for yttria- 
stabilized zirconia. 
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I '  and 1A' with F for calcia-stabilized zirconia. 

~G-  ~ (only) in calcia-stabilized zirconia are shown in 
Fig. 6. 

4. Discussion 

The orientation dependence of the relaxation am- 
plitudes of the loss maxima in cubic zirconia leads to 
the following conclusions: 
(1) The relaxation amplitudes ~SG-a(F) and 8E-I(F)  
of maximum I in ZrOz-Y203 (Fig. 5) may well be 
approximated by linear equations F(F) as expected for 
simple atomic defects. The orientation dependence of 
both relaxation amplitudes agrees well with that of 
trigonal ([lll]-oriented) defects. The solid and dashed 
lines in Fig. 5 correspond to eqn. (6). For a tetragonal 
defect we would expect just the opposite behaviour 
(eqn. (7)). In ZrO2-CaO the orientation dependence 
of maximum I '  for the two orientations is also in 
agreement with a trigonal defect symmetry (dashed line 
in Fig. 6). Maximum IA in Z r O 2 - Y 2 0 3  does not exhibit 
a linear relation between either 6G-  1 or ~E- ~ and F 
as expected for the simple atomic defects according to 
eqns. (6) or (7). This indicates that defects of lower 
symmetry and/or interaction of defects (agglomerates) 
may contribute to this relaxation. 
(2) Apparently, loss maxima I and I '  are due to elastic 
dipoles with trigonal symmetry. The shape factor 6A 
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describing the anisotropy of the distortion pattern may 
be determined from ~ - I ( F )  or 8E-I (F)  (eqns. (5(a), 
5(b)). For trigonal defects we have/(1 =Ke = 4/9 [5-7]. 
We may assume further that the concentration of 
dipoles, Co, corresponds approximately to that of oxygen 
vacancies [Wo]. This may be estimated with the help 
of eqns. (1) and (2) from the dopant contents and by 
referring to the anion sublattice (i.e. co -- 0.075 for yttria- 
and co --- 0.08 for calcia-doped zirconia). With eqns. (5a) 
and (5b) we arrive at/~h--O.1 for Y 2 0 3  - and ~h=O.05 
for CaO-doped Z r O  2. 

(3) The trigonal symmetry of the defects causing maxima 
I and I '  leads directly to their assignment to 
(Yzr'Vo)" and (Ca"Vo) X associates in which the oxygen 
vacancies are positioned on the eight [ l l l ] -or iented 
neighbour positions around the dopant atom (see Fig. 
l(b)). 

The orientation dependence of loss maxima I and 
I '  gives an excellent verification of the "8 position 
model" (see Fig. l(b)). The assignment of maximum 
I in yttria-doped zirconia to (Yzr'Vo)'-dipoles is also 
in agreement with earlier results from TZP [17, 18]. 
For lower yttria contents (2-3 mol.%) an isolated loss 
maximum is observed at slightly lower temperatures 
(Tp~380 K for 1 Hz, H =  =0.95 eV) which correlates 
with a dielectric loss maximum with about equal ac- 
tivation enthalpy. The relaxation times differ by a factor 
of about two. The tetragonality of TZP is only about 
1.02 thus allowing a direct comparison of results from 
cubic and tetragonal ZrO2. In tetragonal zirconia the 
peak temperature, and thus the activation enthalpy for 
reorientation of dipoles, increases with yttria contents. 
This may explain the slightly higher peak temperature 
(=  410 K) of maximum I in cubic zirconia with 10 
mol.% Y203. 

The existence of additional loss maxima (IA, IA') at 
higher temperatures may be quite naturally assigned 
to relaxation of oxygen vacancies within Y- or Ca- 
clusters, from which different types and configurations 
may exist. Interactions of the dipoles (defects) with 
each other as well as the existence of ordered or partly 
ordered domains may contribute to the broadening of 
the loss maxima. 

5. Conclusions 

Yttria- and calcia-stabilized zirconia exhibit a highly 
defective structure due to the high dopant concentra- 
tions required for stabilization. The orientation de- 
pendence of loss maxima I (ZrO2-Y203) and I '  
(ZrO/-CaO) indicates that the oxygen vacancies are 
predominantly associated in nearest neighbour positions 
with the dopant ions thus representing defects with 
trigonal symmetry (elastic dipoles). Agglomeration and 
defect interaction leads to additional loss maxima (IA, 
IA') which are positioned at higher temperatures than 
the dipole maxima 1 and I ' .  
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